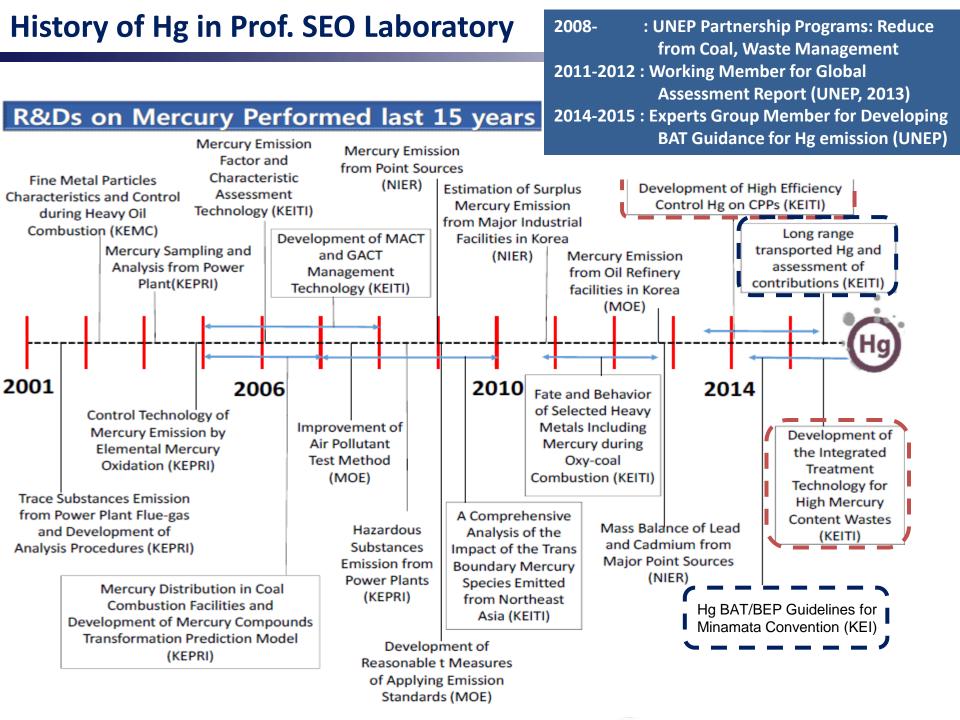


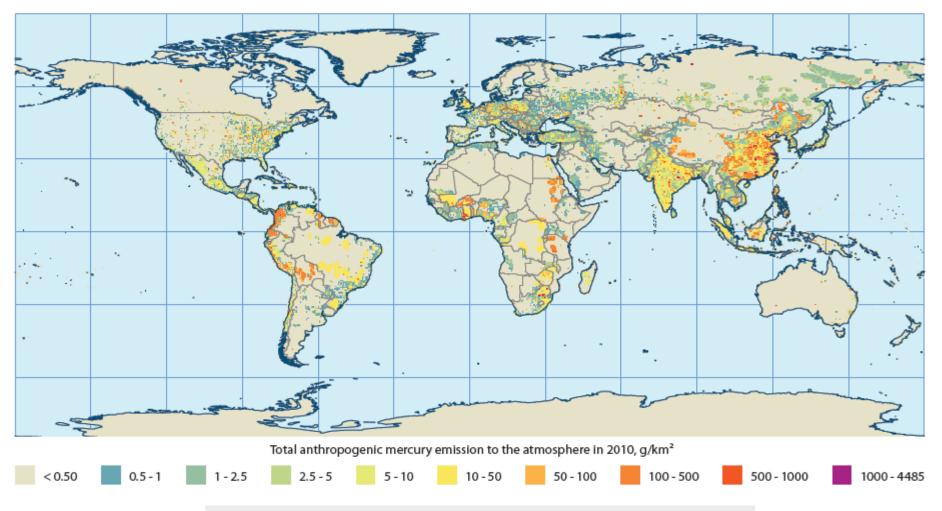
2015 International Conferences on Mercury Pollution Prevention and Control Beijing, China, Dec. 8-9, 2015

Effects of Existing APCDs and BATs Applications on Mercury Removal at Annex D Sources in Minamata Convention


Yong-Chil Seo

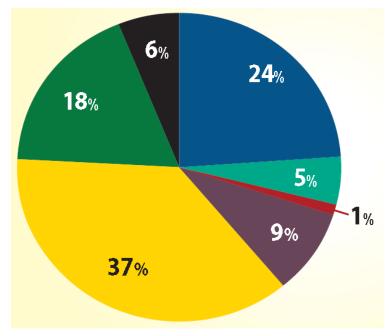
Professor, Dept. of Environmental Engineering, Yonsei University

Republic of Korea

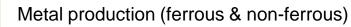

- **1. Mercury Air Emission Inventories**
- 2. Emission, Speciation, and Behavior of Hg in Annex D
- 3. Co-beneficial Effect of APCDs on Mercury Removal
- 4. Effect of BATs Application to Existing APCDs
- 5. Summary

1. Mercury Air Emission Inventories

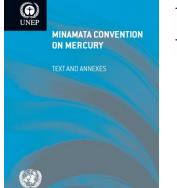
Global Distribution of Anthropogenic Mercury Emissions to air in 2010



Global Grand Total (2010) : Ave. 1,960 ton-Hg (1,010 ~ 4,070 ton-Hg)


1. Mercury Air Emission Inventories

Global Anthropogenic Mercury Emissions in 2010

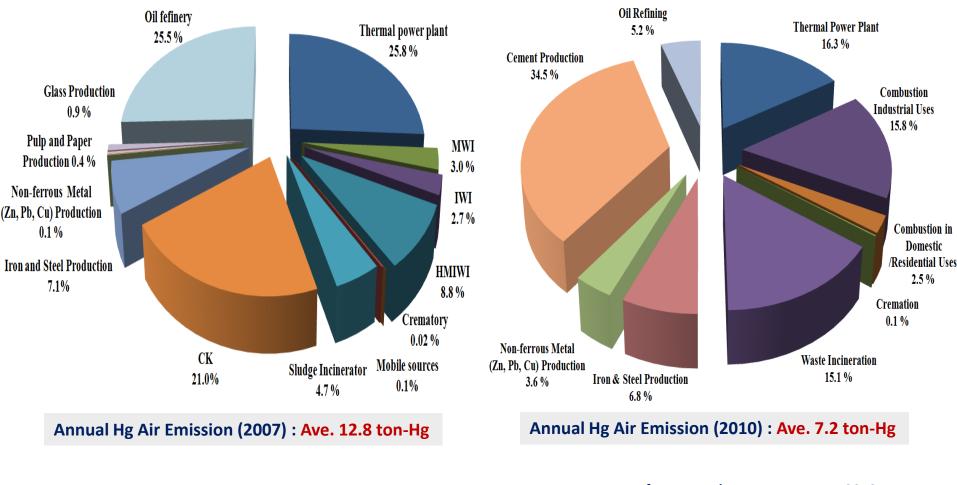


Fossil fuel combustion (power & heating)

- Chlor-alkali industry
- Waste incineration, Waste & other
- Artisanal and small-scale gold mining
- Cement production

Other

- Minamata Convention adoption (`13.10)
- ANNEX D (major management source)
- 1. Coal-fired power plants;
- 2. Coal-fired industrial boilers;
- 3. Smelting and roasting processes used in the production of non-ferrous metals
- 4. Waste incineration facilities;
- 5. Cement clinker production facilities.



Blood Hg concentration in other countries

1. Mercury Air Emission Inventories

Anthropogenic Mercury Emission (Air) in Korea

Kim et al., 2010; Atmospheric Environment 44 (23), 2714-2721.

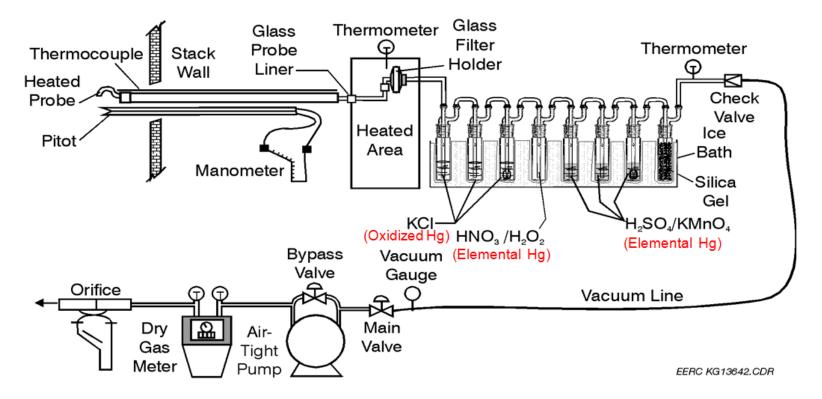
NIER , Report of Integrated Hg Management, 2013

2. Emission, Speciation, and Behavior of Hg in Anthropogenic Sources

Mercury Compounds Analysis in Annex D

EPA Method 7470, 7471

EPA Method 1631


Mercury Compounds Analysis Method

Ontario Hydro Method (ASTM, D 6784-02)

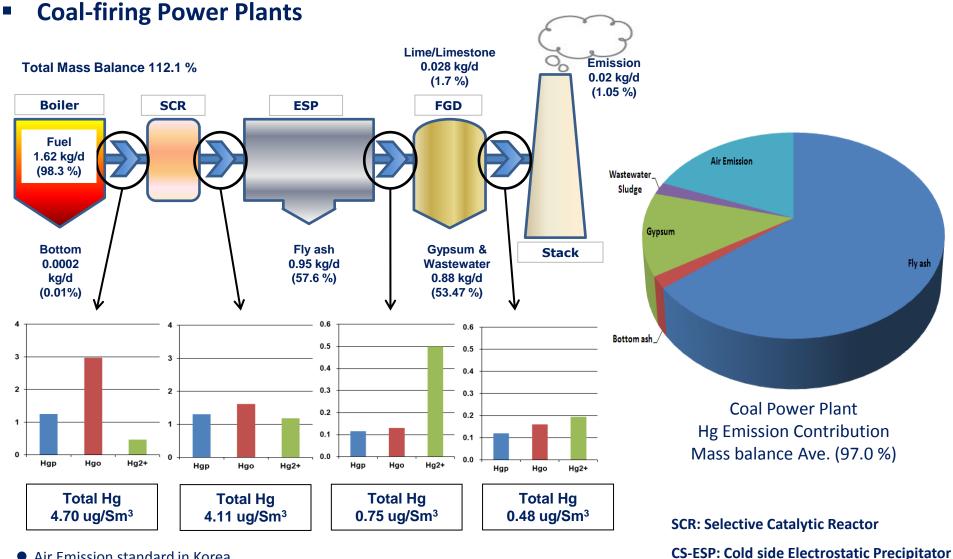
1st - 3rd Train 1N KCl (100ml)

4th Train 5% HNO₃-10%H₂O₂ (100ml)

5th - 7th Train 4wt%KMnO₄-10%H₂SO₄ (100ml)

Reference : - Ontario Hydro Mercury Speciation Method, Mercury Measurements Workshop (2004) DOE/NETL and EPRI

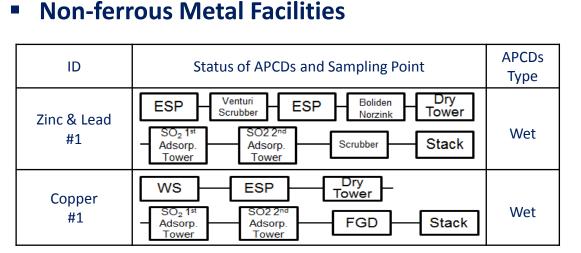
8

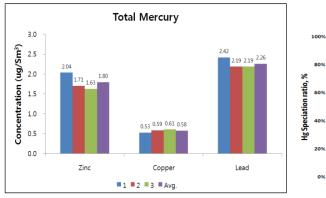


Oxidation Trend of Hg

$$Hg^0 \rightarrow Hg^{2+}$$

- 1. Temperature increase : $Hg^{2+} \downarrow$
- 2. Chlorine (Cl) content increase : $Hg^{2+} \uparrow$
- 3. NO₂, HCl, NO & SO₂ complex : Hg²⁺ \uparrow
- 4. Passing through ESP : $Hg^{2+} \uparrow$
- 5. Passing through wet FGD : $Hg^{2+} \downarrow$
- 6. Passing through SCR : $Hg^{2+} \uparrow$


 Air Emission standard in Korea (Coal-firing power plant) : 0.05 mg/Sm³


Reference : 1)Kim and Seo (2010) Ind. Eng. Chem. Res., 49(11)

2) Study on Emission of mercury for the atmospheric emissions facilities (

FGD: Flue Gas Desulphurization

- Total Hg Concentration (outlet APCDs)
- Zinc Facility : 1.80 ug/Sm³
- Cupper Facility : 0.58 ug/Sm³
- Lead Facility : 2.26 ug/Sm³

- Measured Facility has High Efficiency APCDs for Hg reduction
- B/F: Remove Hg-p

11.11%

72.78%

16.11%

Zinc

80%

60%

20%

0%

- Wet APCDs & FGD : Remove Hg²⁺
- Air Emission standard in Korea (Non-ferrous smelting Facility) : 0.05 mg/Sm³

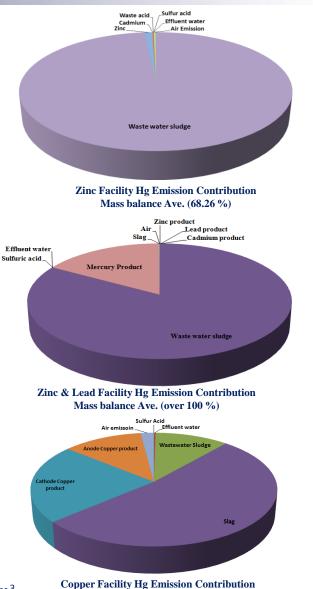
Hg Compounds emission ratio

(Non-ferrous Metal Production) Hg0 Hg2

37.93%

27.59%

34.48%

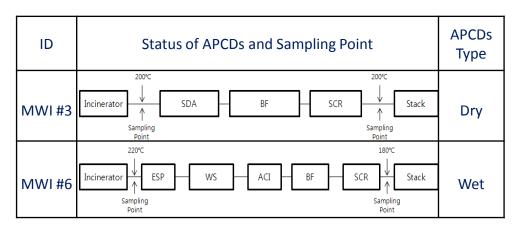

Copper

7.52%

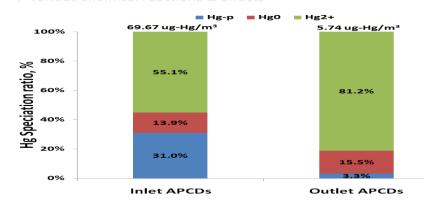
38.50%

53.989

Lead

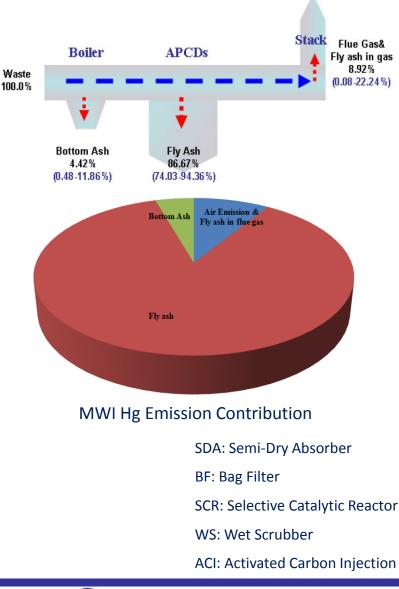


Reference : - Study on Emission of mercury for the atmospheric emissions facilities (I) (2008) NIER, Conducted and Reported by Yonsei



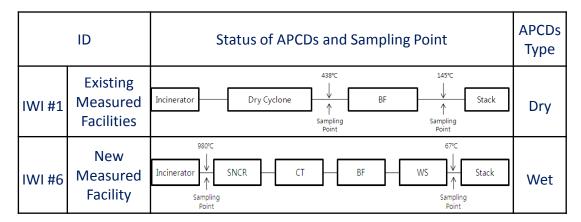
Mass balance Ave. (97.06 %)

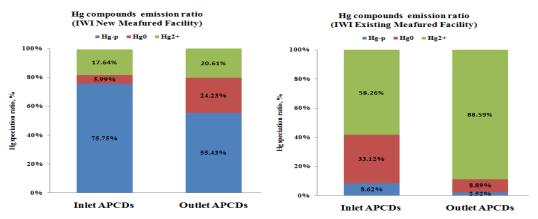
Municipal Waste Incineration



Input Waste : Variety type of waste at the same time
→ Various chemical reactions & effects

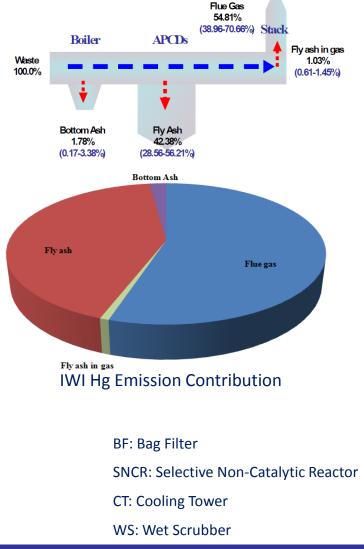
- High efficiency APCDs is equipped compared with other facilities
- Air Emission standard in Korea (Incineration Facility) : 0.08 mg/Sm³


Reference : - Study on Emission of mercury for the atmospheric emissions facilities (I) (2008) NIER , Conducted and Reported by Yonsei

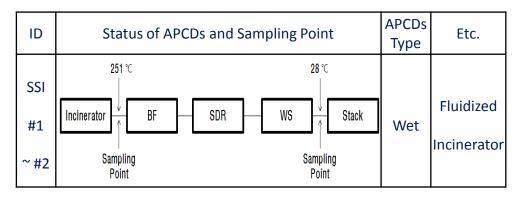


Air & Waste Engineering Laboratory

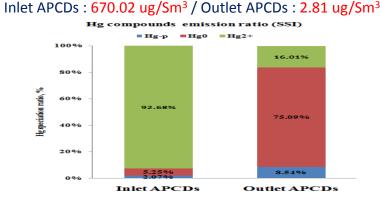
Industrial Waste Incineration



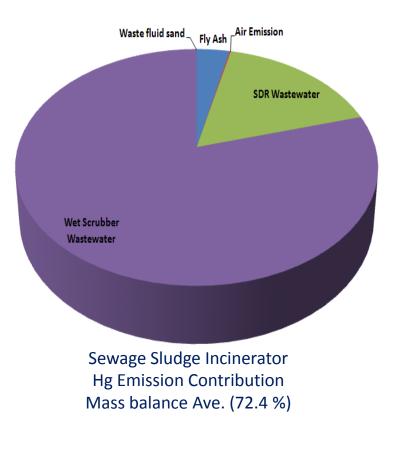
- Input Waste : Various type of wastes
- Emission Concentration : large Variation range


- U.S. EPA(1999) Data : 0.48~1,396 ug/Nm³ (Outlet APCDs) : large variation range
- Air Emission standard in Korea (Incineration Facility) : 0.08 mg/Sm³

Reference : - Study on Emission of mercury for the atmospheric emissions facilities (||) (2010) NIER, Conducted and Reported by Yonsei

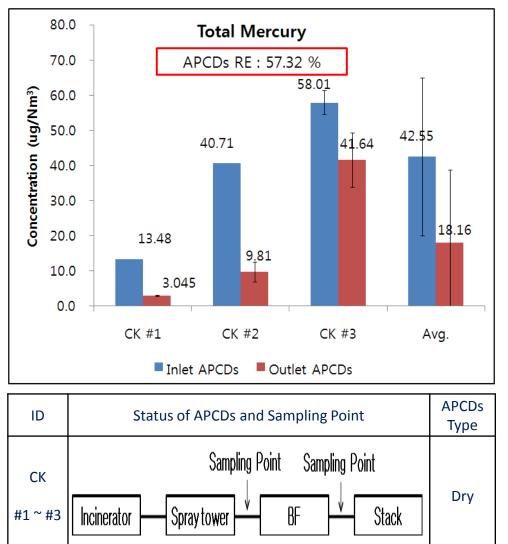


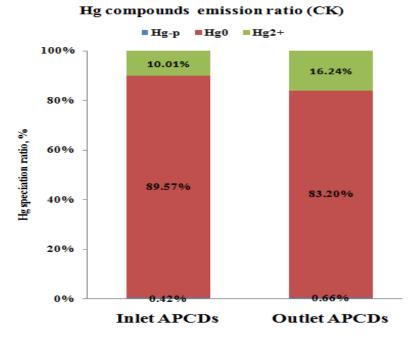
Sewage Sludge Incineration



Total Hg Concentration

- Measured Facility has High Efficiency APCDs for Hg reduction.
- B/F : Remove Hg-p
- SDR & Wet Scrubber : Remove Hg²⁺
- Air Emission standard in Korea (Incineration Facility) : 0.08 mg/Sm³




BF: Bag Filter SDR: Semi-Dry Reactor

WS: Wet Scrubber

Cement Kilns

- Total Hg Concentration
- Inlet APCDs : 42.55 ug/Sm³
- Outlet APCDs : 18.16 ug/Sm³

- Input materials : Various type of Secondary fuel & Raw material → Impact on Hg Emissions
- Air Emission standard in Korea

(Cement Clinker production) : 0.08 mg/Sm³

BF: Bag Filter

Reference : - Study on Emission of mercury for the atmospheric emissions facilities (I) (2008) NIER , Conducted and Reported by Yonsei

Coal-firing Power Plants

[]widely used configuration

	Destin		Removal (%)		Hg
Fuel	Portion (%) Configuration of APCDs		Preceding research	Literature	concentration (ug-Hg/m ³)
Bitum	62.79	Boiler - SCR - EP - FGD - Stack	68.87	67	1.64 (0.23~2.47)
inous	-	Boiler EP FGD Stack	75.76	63	2.01 (1.63~2.27)
0 methods	16.07	Boiler - SCR - EP - FGD - Stack	78.24	70	2.77 (2.08~3.33)
Anthr acite	42.56	Boiler EP FGD Stack	80.10	81	2.80
	41.37	Boiler EP Stack	68.57	22	2.75

• Co-beneficial effect of APCDs

- ESP : only Hg_p is removed

- ESP + FGD : Hg_p and Hg^{2+} are removed

- Hg_p and Hg^{2+} are removed with more Hg^{2+} available at FGD intlet

References : 1) Study on Hg emissions from domestic industrial facilities (I)(2008) NIER, Conducted and Reported by Yonsei

2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted and Reported by Yonsei

3) A study on integrated management of mercury using and emission facilities (2010) NIER

4) Kyu-Sik Park et al., (2008) Emission and speciation of mercury from various combustion sources, Powder Technology, 180, pp. 151-156

5) Jin-Ho Sung et al., (2014) Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant, J. KOSAE, 30(3) pp.261-269

6) UNEP (2014) Guidelines BAT/BEP for mercury emission control from coal combustion

7) Technical Background Report for the Global Mercury Assessment 2013

Coal-firing Power Plants

Existing Control Equipment	Qualitative Hg Capture
ESPc only	Good capture of particulate- or sorbent-bound
ESPh only	Low co-benefit capture
FF only	Good co-benefit capture of Hg ²⁺ ; Hg ⁰
ESPc + Wet FGD	Good co-benefit capture for bituminous coals
ESPh + Wet FGD	Moderate co-benefit capture for bituminous coals
SDA + FF	Very high co-benefit capture expected for bituminous coals
FF + Wet FGD	Good co-benefit capture for bituminous coal
SCR + ESPc	Good capture of particulate- or sorbent-bound Hg
SCR + ESPh	Low co-benefit capture
SCR + ESPc + Wet FGD	Good capture of particulate- or sorbent-bound Hg
SCR + HEX + LLT-ESP + Wet FGD	Very high co-benefit capture for bituminous coals, less for low rank coals
SCR + SDA + FF	Very high co-benefit capture for bituminous coals
SCR + ESPh + Wet FGD	Poor capture of particulate-bound Hg and total Hg for low rank coals
SCR + FF + Wet FGD	High level of Hg capture for all coals

Note: special considerations for seawater FGD

ESP = electrostatic precipitator ESPc = cold side ESP

ESPh = Hot side ESP

FF = fabric filter

SDA = spray dryer absorber (dry scrubber)

Wet FGD = wet flue gas desulfurization scrubber

SCR = selective catalytic reduction

Reference : European IPPC Bureau (EIPPCB) (2013). Best Available Techniques (BAT) Reference Document for the Large Combustion Plants Srivastava et al., (2006). Control of Mercury Emissions from Coal-Fired Electric Utility Boilers, Environ. Sci. Technol., vol. 40, pp. 1385–1392, 2006.

Non-ferrous Metal Facilities

__widely used configuration

Non-		Removal (%)		Hg
ferrous metal	Configuration of APCDs	Preceding research	Literature	concentration (ug-Hg/m³)
Zinc	ESP Venturi Scrubber ESP Boliden Dry Norzink Tower SO ₂ 1 st SO2 2 nd Adsorp. Tower Stack	99.9	99	1.23 (0.71~1.80)
Cooper	WS ESP Dry Tower SO ₂ 1 st SO2 2 nd Adsorp. Tower FGD Stack	99.9	99	0.40 (0.20~0.58)
Lead	ESP Venturi Scrubber ESP Dry Tower SO ₂ 1 st SO2 2 nd Scrubber Stack Adsorp. Tower Stack	99.9	99	3.09 (0.57~6.44)

High Hg removal efficiency of APCDs for

- Hg oxidized in sulfuric acid process

- Most Hg²⁺ controlled from Boilden Norzink

Reference : 1) Study on Hg emissions from domestic industrial facilities (I)(2008) NIER, Conducted and Reported 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER Conducted and Reported Air & Waste Engineering Laboratory

Waste Incineration (MSW)

widely used configuration

	Scale		Removal (%)		Hg
Waste	(ton/hr)	Configuration of APCDs	Preceding research	Literature	concentration (ug-Hg/m ³)
	0.67	SDS BF Stack	74.55		33.98
	1.87- 8.47	SDR BF SCR or Stack	98.14	-	1.40
	6.25- 11.65	SNCR SDR BF SCR Stack	97.08	-	4.55
Municipal Solid	8.30	SDA BF Stack	68.61	-	6.84
waste	7.50	SDA BF SCR Stack	93.95	-	10.52
	2.79	SDA ACI BF SCR Stack	92.92	-	7.07
	5.30	SDA ACI BF Stack	86.92	-	4.19
	4.75	EP WS ACI BF SCR Stack	71.07	99	4.42

Reference : 1) Study on Hg emissions from domestic industrial facilities (I)(2008) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** Provide the study of the study of

Waste Incineration (ISW)

Gwidely used configuration

					garate
	Scale (ton/hr)		Removal (%)		Hg
Waste		Configuration of APCDs	Preceding research	Literature	concentration (ug-Hg/m ³)
	3.00	CY DR BF Wet Adsor EP ption Stack	95.08	-	3.86
	0.40- 2.00	CY BF Stack	41.79	-	918.71
Industrial	3.00- 3.84	CY BF or WS PT or Stack	60.52	-	6.98
Solid waste	1.20- 4.00	SNC SDR CY BF WS Stack	43.41	>95	41.31-64.48
	1.40- 6.25	EP WS SCR Stack	92.16	-	43.16
	6.00- 6.25	EP VS WS SCR Stack	99.23	-	0.13-40.69

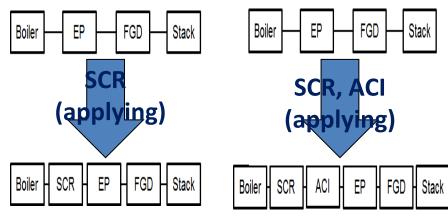
• Low removal efficiency & high Hg emission

- Some IWI need to apply BEP & BAT (ACI, WS etc.)

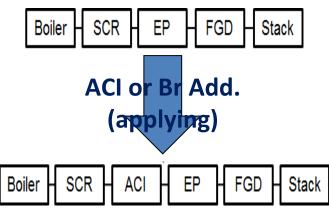
Reference : 1) Study on Hg emissions from domestic industrial facilities (I)(2008) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study 2) Study

Cement Kilns

Widely used configuration


	Portion	tion		Removal (%)	
Facility	of production (%)	Configuration of APCDs	Preceding research	Literature	Hg concentration (ug-Hg/m ³)
СК (3)	35.74	SNCR BF Stack	51.43%	55%	18.17 (3.05~41.64)
СК (1)	7.98	SNCR ESP BF Stack	-	77%	-

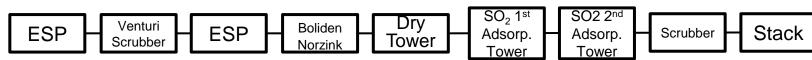
• Simple APCDs & low removal efficiency


- Using alternative fuel(waste) \rightarrow changes in mercury emssion
- Need to apply Best Available Technology & Best Environmental Practices

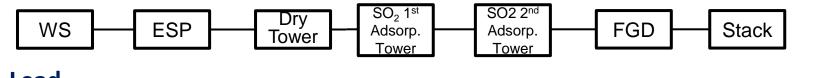
Reference : 1) Study on Hg emissions from domestic industrial facilities (I)(2008) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study on Hg emissions from domestic industrial facilities (II)(2010) NIER, Conducted an **Control of Study** 2) Study 2) Study

- Coal-firing Power Plants
 - Anthracite

-	Bit	um	in	ous
---	-----	----	----	-----

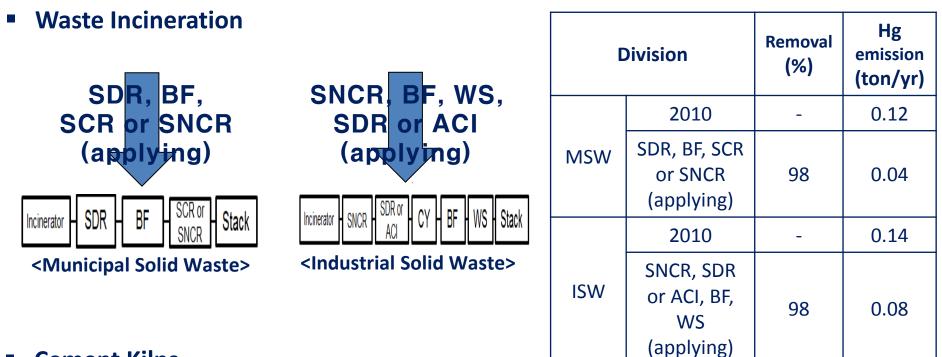


	Removal (%)	Hg emission (ton/yr)
2010	80	0.002
SCR, FGD (Applying)	80	0.001
ACI (Applying)	90	0.001

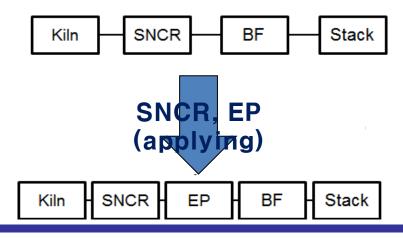

	Removal (%)	Hg emission (ton/yr)
2010	75	1.171
ACI or Br (Applying)	90	0.507

- Non-ferrous Metal Facilities
 - Zinc

- Cooper

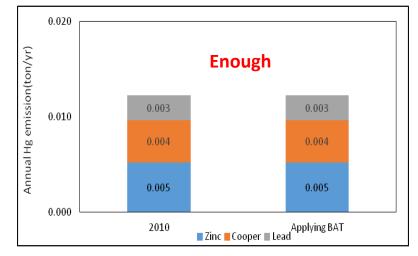


- Lead

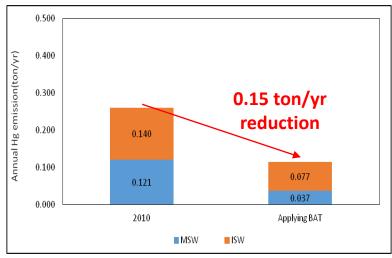


Division	Zinc	Cooper	Lead
Removal (%)	99.9	99.9	99.9
2010 (ton/yr)	0.005	0.004	0.003

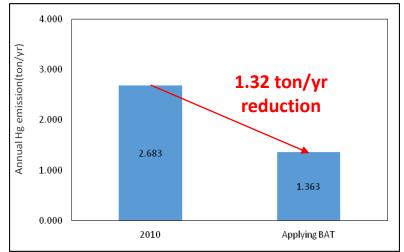
Cement Kilns



Division	Removal (%)	Hg emission (ton/yr)
2010	50	2.68
SNCR, EP (applying)	77	1.36

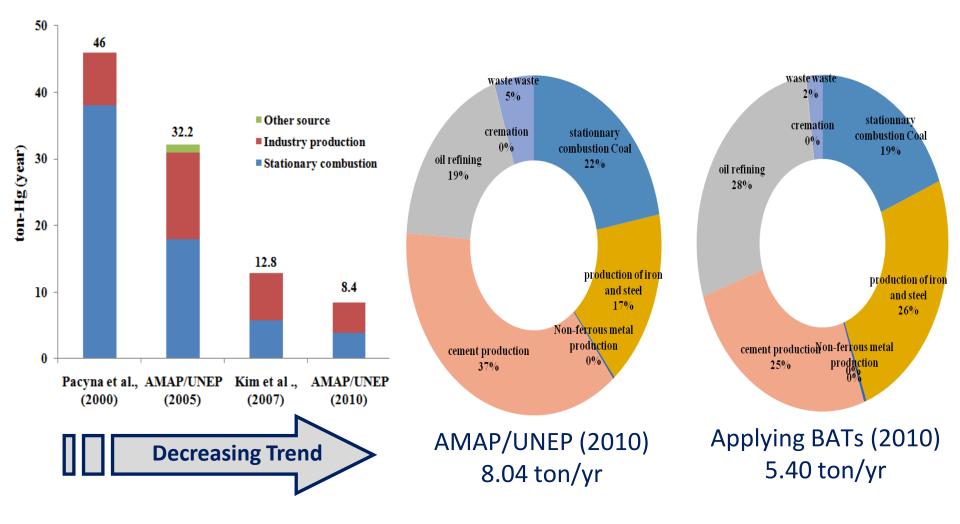

1.500 (h/u0) 1.000 0.500 0.000 0.000 0.000 0.001 0.

- Non-ferrous metal smelting facilities



- Waste incineration facilities

- Coal power plants



- Cement clinker production facilities

Air & Waste Engineering Laboratory

5. Summary

- International Convention on Mercury (Minamata Convention) was opened for signature by UNEP in 2013.
- Mercury in flue gas was mainly speciated into gaseous form, particle bound mercury was less. Elemental Hg was oxidized in dry APCDs. Hg²⁺ was absorbed in wet APCDs scrubber solution.
- Inclusion of real output distribution factors resulted decrease in share of mercury release into air, sector specific treatment/disposal and impurity in products, where as distribution in water and land increased; this is due to the use of efficient process technology and the co-beneficial effects by existing APCDs.
- Article 8 of the Minamata Convention on Mercury addresses controlling and where feasible reducing emissions of mercury (Hg) and Hg compounds (total Hg) to the atmosphere through measures to control emissions. BAT (Best Available Techniques) Guidance Documents for the control of Hg emissions will be soon available for Annex D facilities.
- ✓ The attempt to utilize such BATs to existing APCDs in Annex D facilities was made by suggesting proper BATs and which could be resulted in the reduction of mercury emission more. In conclusion the emission inventory of mercury would be reduced to under 5 tons annually by such application in South Korea.

THANK YOU FOR LISTENING seoyc@yonsei.ac.kr

